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Subject: Final Report on Contract No. NAw-6259 

Gentlemen: 

I n  the present l e t t e r  an attempt i s  made t o  summarize the ac t iv i t ies  
which have taken place under your sponsorship i n  connection with contract 
NAw-6539. I n  a sense, t h i s  le t ter  is a f ina l  report i n  name only. While 
cer ta in  phases of the investigation have been carried t o  a conclusive stage, 
other phases are being further investigated. 
press his appreciation for  the support received thus far. 
ated under this contract i s  continuing and is, a t  least t o  some extent, 
being supported under a different  grant. 
the present contract become available your office will be kept f u l l y  in- 
formed and supplied with copies of future reports or repr ints  of future 
publications. 

The writer would l i k e  t o  ex- 
The study initi- 

As f'urther resu l t s  pertinent t o  

The subject which was t o  be studied under t h i s  contract i s  rather broad 
The , / and has therefore led  t o  a number of f a i r l y  independent investigations. 

question of the vibration and f lu t t e r  of buckled panels of f i n i t e  aspect r a t i o  
has received relat ively l i t t l e  previous attention. 
the substantial  mathematical complexity of the subject matter. I n  particular, 
the configuration in to  which a panel may buckle as a result of edge pressures, 
thermal expansion, etc., i s  governed by a system of nonlinear equations f o r  
which exact solutions are available only i n  an exceedingly s m a l l  number of 
cases. 
greater d i f f icu l t ies .  Approximate schemes have been devised m a k i n g  use of 
energy relat ions or  through the application of the Galerkin-Bubnov method 
which, f o r  the self-adjoined case, are equivalent. 
approximations, however, has never been demonstrated f u l l y  sat isfactor i ly .  

uc- 

Presumably this is  due to 

'Ibis being so it i s  obvious tha t  the dynamic response poses even 

!Ihe accuracy of such 

One of the few exact solutions t o  the s t a t i c  problem (exact, tha t  is, with- 
i n  the framework of the equations of von K'm'm) i s  the one due t o  Friedrichs 
and Stoker,* which gives a solution t o  the postbuckling behavior of a circular 
p la te  under increasing radial pressure and under the assumption of rad ia l ly  
symmetric deformatibn. 
resents one of the major e f for t s  of the Dresent contract and. i n  fact .  one 

The vibration of a plate  about i t s  buckled s t a t e  rep- 

*See Ref. 12 (Appendix). 66-8Cf96 * 
UCCESSION NUMBER1 
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which has been carried out fully.  The calculations are based on s m a l l  vibra- 
t i on  amplitudes relat ive t o  the s t a t i c  configuration; however, the assumption 
of rad ia l  symmetry of the vibrating mode i s  not retained. 

A detailed description of the method as w e l l  as of the results i s  given 
i n  the Appendix. 
ceived from B. Herzog, who carried out most of  the calculations and who was 
i n  charge of the rather involved computer program. 
j ec t  as a basis fo r  h i s  Ph.D. dissertation. 

I would l i k e  t o  acknowledge the help and cooperation re- 

Mr. Herzog used the sub- 

The method employed can be termed "exact" i n  the same sense as any 
truncated power ser ies  development can be so defined. 
of i n s t ab i l i t y  a perturbation scheme w a s  employed, which expresses the dynamic 
behavior of the structure near the singular point which is  identified with the 
lo s s  of s tab i l i ty .  The convergence of the perturbation method diminished rap- 
i d ly  f o r  increasing s t a t i c  amplitudes; a power ser ies  development was there- 
fore  resorted-to, whose convergence remained adequate within the capacity of 
the available computing f a c i l i t i e s .  

Near the i n i t i a l  point 

The results of the calculations are  shown i n  Figs. 1, 2, and 3 .  It is  
seen tha t  the s t i f fness  of the structure, as represented by i t s  lowest f r e -  
quency of vibration, increases rapidly as buckling proceeds. It is a l s o  seen 
tha t  the "fundamental" mode of vibration-that is, a rad ia l ly  symmetric mode 
exhibiting no nodes-ceases t o  be fundamental, while the lowest frequency i s  
associated with modes which, f o r  the unbuckled case, are considered of higher 
order. This i s  not surprising since the plate  becomes similar t o  a she l l  and 
therefore develops a tendency to vibrate as much as possible i n  an incompres- 
s ib l e  manner. 

It i s  interesting t o  note  that, at  l ea s t  within the limits of the cal-  
culations carried out, no frequency becomes imaginary. I n  the authors' closure 
t o  the discussion of t he i r  paper, the argument had been advanced by Friedrichs 
and Stoker tha t  the development of nonsyametric ripples, which m e  observed i n  
experiments, may be due t o  the f ac t  that the symmetric buckling mode might it- 
se l f  become unstable. 
near the s t a t i c  configuration should cease t o  be positive definite; that ,  i n  
turn, would lead t o  imaginary frequencies i n  the present study. 
therefore tha t  the reasoning advanced by the authors i s  not l i ke ly  t o  give a 
sat isfactory explanation of the phenomenon of secondary buckling. 
such phenomena can be explained i n  terms of a snapping process similar t o  the 
one observed i n  the ordinary buckling of shel ls .  

If t h i s  were so, the expansion of the potential energy 

It appears 

More l ikely,  

Other phases of the work carried out under t h i s  contract have not yet 
reached the degree of completion as the one described above. For example, a 
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technically much more significant problem is  the determination of the modes 
and frequencies of vibration of buckled rectangular panels about the i r  s t a t i c  
configuration. 
d i f f i cu l t i e s  than the one associated with the circular 
t h i s  problem has been in i t i a t ed  and i s  proceeding a t  the present t i m e .  
wri ter  is availing himself of the help of C. Woodworth, who i s  writing h i s  
doctoral disser ta t ion on this subject. 

Unfortunately t h i s  problem also poses far greater analytical  
plate. .  A study of 

The 

Again a perturbation approach is f ru i t fu l  fo r  an analysis of the dy- 
namic behavior of the plate  i n  the immediate v ic in i ty  of i t s  in i t i a l  buckling 
point. 
because of the increasingly s l o w  ra te  of convergence. 
methods are not d i rec t ly  applicable fo r  the present case solutions are pres- 
en t ly  being sought on the basis of approximate methods of approach. Several 
such approximations have been proposed i n  the past; these are essent ia l ly  
variations of methods which, i n  the Western l i t e ra ture ,  are associated with 
the name of Marguerre* and which have been widely applied i n  the Russian lit- 
erature under the name of Papkovich. 
the s t r e s s  function "exactly" on the basis of an assumed aggregate of defor- 
mation functions and t o  make then the proper selection among t h i s  aggregate 
on the basis of energy considerations. 

For increasing s t a t i c  amplitudes t h i s  approach i s  again inoperative 
Since power ser ies  

These consist essent ia l ly  i n  finding 

The writer does not feel tha t  these methods are  of sufficient re l iab i l i ty .  
It is  easy t o  see tha t  while the s t a t i c  deflection functions are obtained i n  
t h i s  manner with a fair degree of  accuracy, such accuracy i s  debatable i n  the 
case of the result ing s t ress  functions. On the other hand the dynamic behav- 
i o r  of a buckled panel about i t s  s t a t i c  configuration seems t o  be intimately 
related t o  the existing s t a t e  of s t ress  i n  the panel. The method being at- 
tempted m a k e s  use of approximations i n  the s t r e s s  function space* rather than 
i n  the deflection function space; i t  i s  hoped that the resu l t s  will exhibit 
greater dependability, although the numerical labor involved is rather formida- 
ble. 

For f a i r l y  small buckling amplitudes experimental as w e l l  as highly s i m -  
p l i f i ed  analytical  investigations have led  t o  the observation of f l u t t e r  phe- 
nomena which were not confined t o  small amplitudes, but which involved com- 
plete  snapping operations through the unbuckled configuration. 
l e m  which i s  nonlinear i n  both i ts  s t a t i c  as well as i ts  dynamic parts. As 
expected, only approximate methods are l i ke ly  to  be usable fo r  t h i s  case. 

This is  a prob 

Extensive work has been carried out, and is  continuing t o  be carried 
out, by the writer and Dr .  J. Eisley of the Department of Aeronautical 

*See, e.g., Ref. 9 (Appendix). 
**For the s t a t i c  case the method i s  described i n  R e f .  19. 
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Engineering of The University of Michigan. 
of f r e e  vibrations as well as the development of f l u t t e r ,  f o r  which both 
l inear  and nonlinear aerodynamic theories are being used. For the one-degree- 
of-freedom system exact solutions t o  the result ing nonlinear equations are 
eas i ly  found i n  terms of e l l i p t i c  functions. This is  i n  essence s i m i l a r  t o  
the work of Chu and Herrmann,* who, however, have not included i n  the i r  work 
the e f fec t  of buckling stresses.  

This involves both the question 

A two-degree-of-freedom system is presently being investigated. This 
i s  necessary from the practical  point of view since the actual f l u t t e r  mode 
of the buckled panel must necessarily include a t  l e a s t  one higher mode. 
Analytical solutions have been found and are  being extended; these are being 
checked against solutions obtained through the use of analogue computers. 

Two more phases are actively being pursued. In  one the writer, with 
the assistance of D. Beaty (another Ph.D. candidate) is  analyzing the dynamic 
response of a spherical she l l  under external pressure. 
ploying a method first proposed by Koiter i n  a l i t t l e  known paper. It is  
hoped tha t  t h i s  study will throw some light on the continuing controversy 
over the discrepancy which exis ts  between classical  buckling theory and ex- 
perimentally observed resu l t s  relating t o  the in s t ab i l i t y  of spherical shells. 
An experimental program supplementing the analysis i s  being carried out t o  
ver i fy  the data obtained analytically. 

This i s  done by em- 

Recently the writer engaged R. Armstrong i n  a study of the dynamic 
response of a cylindrical  she l l  which i s  subjected t o  a time-dependent 
axial  force. This work, which represents M r .  Armstrong's Ph.D. thesis,  
is  t o  include the effect  of longitudinal waves i n  the shel l .  
studies have been carried out by E. Sevin i n  connection with the buckling 
of simple s t ruts ;  i n  tha t  case the effect  of the longitudinal waves w a s  
found t o  be negligible as compared with the simplified dynamic analysis 
conducted some years ago by N. J. Hoff .  I n  the case of shells,  however, 
it i s  not cer ta in  tha t  the presence of longitudinal waves may not have a 
profound effect  on the s t a b i l i t y  of the she l l  since, unlike the case of 
the simple column, an expansion of the potential  energy exhibits th i rd  
order terms. This means tha t  fo r  suff ic ient ly  strong longitudinal waves 
the membrane energy may be converted in to  energy of such amplitude as t o  
propel the she l l  "over the hump." 

Similar 

*"Influence of Large Amplitudes on Free Flexural Vibrations of Rectangulas 
Elas t ic  Plates," by Hu-Nan Chu and G. Herrmann, J. Appl. Mech., V o l .  23, 
No. 4, 1956, ASME. 
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This represents a brief resume of the work already initiated and/or 
completed. Further work is presently being contemplated, and the writer 
w i l l  deem it a privilege to keep you fully informed with regard to all 
future findings. 

Very truly yours, 

E. F. Masur 
Professor of Engineering 
Mechanics and Project Director 



APPENDIX 

Frequencies and Modes of Vibration of Buckled Circular Plates. 

E. F. M a s u r  and B. Herzog 



I. INTRODUCTION 

Modern engineering structures have been experiencing a very 

rapid decrease in their "thickness" dimension as severe weight (and 

other) limitations have been imposed during recent years. 

many structures are used in a post buckled state, that is to say the loads 

As a consequence 

sustained are greater than those predicted in the usual " N e r  

sense. The motivation for this state of practice is obvious, however, 

a safe road to design remains to be paved. 

loaded in this manner are frequently expected to survive an environment of 

dynamic forces while subjected to these high static loads. The purpose of 

the present study is to determine the dynamic characteristics of such a 

structure. The results of this study are in the form of the natural fre- 

quencies a d  shapes of the modes of vibration of a circular plate as the 

function of a load parameter. 

In addition, structures 

The free vibrations of elastic bodies or structures about an 

equilibrium configuration have been studied extensively. The natural 

frequency of vibration and the shape of the mode of vibration are the 

most important features which are obtained out of the solution of an 

eigenvalue problem. 

If such a body or structure is first preloaded statically, then 

the resulting frequency and mode of vibration exhibit interesting fea- 

tures. In general, a tensile system of stresses or forces causes an in- 

crease in the Trequency of vibration, while compressive forces serve to 

decrease the frequency of vibration. The initial loading affects the 

effective stiffness of the structure and in the case of a compressive 
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loading the effect i s  such as t o  reduce the stiffbess t o  zero, which 

i s  indicated by zero frequency of vibration, and thus buckling of the 

structure i n  the conventional sense occurs. 

t o  the evaluation of buckling loads predicts buckling when the frequency 

of s m a l l  vibrations about the s t a t i c  configuration goes t o  zero. 

Indeed, a dynamic approach 

The most straightforward example of such a problem is  the 

l a t e r a l  vibration of an elast ic  bar which is  axially loaded. (1-1 m e  

mode shape i s  sinusoidal f o r  a simply supported bar, and the square of 

the frequency of vibration is linearly related t o  the axial force (or 

an associated loading parameter). Lurie(*) has discussed several ex- 

amples related t o  vibration and structural  s tab i l i ty  and c i tes  both 

theoretical  and experimental results. He shows that, i n  general, w i t h i n  

the framework of l inear theorles,whenwer the mode shape of buckling and 

of vibration in the presence of axial  loads is  the same, then the inter- 

action curve between the square of the frequency and some monotonic 

increasing load parameter w i l l  always be linear. 

t h i s  same subject extensively, but frequently has t o  resort  t o  approxi- 

mate means, such as the Rayleigh-Ritz method, t o  solve the problem. 

These problems are solved within the framework of a l inear  theory, 

Massonnet(3) discusses 

The buckling problem is  phrased as an eigenvalue problem of 

the l inear  theory where the eigenvalue i s  associated with the c r i t i c a l  

load and a buckling mode of undekermined amplitude is  obtained. These 

results imply no l a t e ra l  deflection (the t r i v i a l  solution) or that 

buckling occurs suddenly and w i t h  uncontrolled amplitude. 

paradoxical situation never arises i n  rea l i ty  is  explained by the 

presence of some imperfections, e i ther  in  the structure or i n  the 

That t h i s  
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loading system, which always insure that the structure deflects 

la te ra l ly  as the load reaches the c r i t i c a l  value. Even a crude 

experiment w i t h  a simple column shows tha t  t . e  structure does not 

collapse violently as the c r i t i ca l  load i s  reached; however, the 

deflections do become large. 

are not Fully included i n  a linear theory. 

The effects of these large deflections 

In order t o  discuss such 

phenomena more adequately, an improvement in the theory is  made which 

resul ts  in nonlinear differential  equations. In the case of a D b t  

such equations were given by von &. ' (4) 

The solid circular plate i s  the structure t o  be investigated 

here. 

solved extensively. (5r6) The buckling of a circular plate was first  

studied by Bryan. ( 7 )  Federhofer(8) studied the problem of the vibrating 

clamped edge plate subjected t o  edge loads and presented extensive resul ts  

The l inear equations of the classical  theory of plates have been 

of the interaction between campressive (and tensi le)  forces and the fre- 

quency of lateral vibration of the plate.* 

There exis t  relatively f e w  solutions fo r  the nonlinear equa- 
/ /  

tions fo r  plates, introduced in 1910 by von Karmas . 
particularly d i f f i cu l t  for  rectangular plates where several approximate 

methods have been introduced, in particular by Marguerre. 

and Pian (lo) treated the case of vibration of a rectangular plate of 

inf ini te  length and sme cases f o r  plates of f i n i t e  length. For the 

The problem is  

Bisplinghoff 

circular plate, however, several more solutions are available. Way (W 

solved, by parer series methods, the problem of a circular plate  subjected 

t o  l a t e r a l  load. Friedrichs and Stoker (12y13) used perturbation and 

* During the course of the present investigation it was necessary t o  
solve such equations for a simply supported plate. 
those of Federhofer for the clamped edge plate are presented in the 
Appendix B .  

R e s u l t s  similar t o  



power ser ies  methods t o  solve the problem of the sinrply supported 

circular plate subjected t o  cmpressive radial loading ( i n  the plane 

of the plate).  

very exhaustive manner. 

ably m o r e  mathematical diff icul t ies .  

were applied by Bodner (14) t o  a clamped edge plate  f o r  the same type 

of loading. 

Stoker t o  study the effect  of very large l a t e r a l  loads which give r i s e  

t o  certain ins tab i l i t i es .  

methods t o  the problem discussed by Friedrichs and Stoker. 

problems are studied by Alexeev (17) and as a special case in a paper 

by Panov and Feodossiev.(18) Masur(19), in a paper published in 

1958, u t i l i zed  a stress f’unction space together with a minimum energy 

principle t o  obtain a sequence of solutions w i t h  error  estimates for  

the post-buckling behavior of a p la te  using the von Karman ‘ equations. 

In a recent paper, Massonnet (20) considered the e f fec ts  of 

They treated only the  axially symmetric case in  a 

A nonsymmetric version is  beset by consider- 

The methods of these writers 

Brorriberg (15) used the methods u t i l i zed  by Friedrichs md 

Keller and Reiss(16) applied numerical 

Similar 

/ 

i n i t i a l  curvature on the natural frequencies of vibration of an edge- 

compressed, clamped edge, circular plate. He solves the s t a t i c  problem 

by the method of Friedrichs and, Stoker and then assumes that the mode 

shape of vibration i s  the same a s  that of the s t a t i c  problem, and 

u t i l i z ing  the Rayleigh-Ritz method obtains the approximate frequency 

of vibration. 

The present study i s  concerned with the linearized vibrations 

of a circular plate  re la t ive  t o  a s t a t i c  buckled configuration which is  

governed by the von Ksrman equations. The plate  i s  subjected t o  rad ia l  

displacements which are  the cause of the buckling and post buckling 

/ /  
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equilibrium behavior. Although these boundary conditions are  differ- 

ent from those of Friedrichs and Stoker, they are nevertheless mathe- 

matically equivalent for  the s t a t i c  problem. 

however, t o  t r e a t  the problem of nonsymmetric vibrations re la t ive  t o  

a symmetric buckling or  s t a t i c  configuration. 

It is  here possible, 



II. FOIiMULATION OF THE PROBLEM 

For a preliminary consideration of the d i f fe ren t ia l  equations 

governing the present problem consider the xy plane of a Cartesian coor- 

dinate system t o  be the middle plane of the plate. 

the direction of the l a t e r a l  deflection. Such a p la te  may be subjected 

t o  membrane forces i n  the plane of the plate  and lateral loads i n  the z 

direction. In the absence of body 

forces i n  the x and y directions there are  two relevant d i f fe ren t ia l  

equations due t o  von K&IU&. (4)  

t ion of l a t e r a l  equilibrium while compatibility i s  expressed by the 

Equation (2.2). 

The z direction i s  

The thickness of the plate  is h. 

The Equation (2.1) represents the equa- 

P 

where A represents the Laplacian operator, F i s  the Airy stress function, 

77 i s  the l a t e r a l  deflection of the plate  and p is  the load per uni t  area 

applied t o  the lateral suxTace of the plate. 

r i g id i ty  is  

Further, the f lexural  

D =  Eh3 

where E i s  the Youngls Modulus of Elas t ic i ty  and v is Poisson's Ratio, 

-6- 
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and 

Inherent i n  the u t i l i za t ion  of these equations is the inclusion 

in the strain displacement equations of nonlinear t e r m s  hvolving the 

derivatives of w with respect t o  x and y. 

For a moving pla te  the inertia terms which are due t o  the 

motion of an element of the plate in the plane of the plate are neglected 

in comparison t o  those due t o  the lateral motion.* These iner t ia  term, 

which in actual i ty  represent body forces, may, in th is  case then, be 

treated as the l a t e r a l  load 

2 a w  
P = - P h p  (2 .3 )  

where p is  the mass per uni t  volume. 

Only small amplitude harmonic vibrations with respect t o  the 

s t a t i c  configuration of larger amplitude are considered. Consistent 

with t h i s  assumption the following partitioning of the stress function F, 

the displacements, s t ra ins  and other quantit ies i s  proposed 

F = F S +  €@em 
- 
W 

S D i f n t  

= 8. + €9 em 

e i j  = eij + Okije 

Nij  ij i j  

(2.4) 

where e are the Cartesian components of the membrane s t ra ins  

and stresses, w h i l e  u) is the  circular frequency of vibration and E* is  

and N 
i j  i j  

an arbitrary,  smal l  parameter. 

* For a discussion t o  this point see references (21) and (22). 



The membrane stresses N are derivable from the s t ress  
i j  

function F by 

The membrane strains eij are related t o  the stresses by 

e - - 1  - [ ( l+V)Nij  - V N m € j i j  I 
i j  Eh 

where €jij, the Kronecker delta, has values 

Substitution of these qgantities in Equations (2.1) and (2.2) and retain- 

ing only those terms which contain &* t o  the power of one or less yields 

two sets of d i f fe ren t ia l  equations, one governing the s t a t i c  problem and 

the other governing the dynamic problem. These are  

4 - 3 4 )  d = - Eh 

Since all detailed discussions of th i s  p la te  are f o r  a solid 

circular one, of outside radius R, the problem is rephrased in terms 

of the polar coordinates. The s t a t i c  configuration i s  assumed t o  be 

axially symmetric. 

I n  particular,  a l l  quantities a re  chosen in the following form" without any 

However, permit a nonsymmetric dynamic configuration. 

Henceforth, unless otherwise noted, a summation symbol not having the 
summation limits specified i s  intended t o  be s m e d  Over n from 0 t o  Q). 
* 
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significant loss of generality: 
s ;;S = u (r) 

where the u and v variables represent the displacement components in the 

radial and tangential directions respectively. 

Simultaneously it is advantageous to render all pertinent 

quantities in these equations dimensionless, and for this purpose let 

R S  
= 7 "  

S 
@ = -  

F 
D 

(2. l o )  

2 2 where 7 = h2/12(l-v ) . 
By the use of the above expressions the differential equations 

for the static case become, 
1 (2. lla) 4 v w  - - (@'Wt)t = 0 
X 

and (2. llb) 

where $0 = 1 [x( ) I ] '  

respect to x. 

and primes designate differentiation with 
X 
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The dynamic case for the nth mode* is governed by 

and (2.12b) 

In order to be able to state the boundary conditions clearly, 

we rewrite a l l  of the quantities involved, including moments, stresses 

and strains, in terms of the non-dimensional quantities. This is a 

matter of formal substitution and the results are listed below. 

an example, consider in detail the radial strain and the radial 

The radial strain for the dynamic configuration is defined as 

AS 

stress. 

where as before the superscript D refers to the dynamic configuration 

and the superscript S refers to the static one. In terms of the dimen- 

sionless quantities define a strain as 

Consider now the definition fo r  the radial stress component N,. S 

static membrane stress (as obtained from the stress function F S ), is 

The 

- 1 ms _ - -  
'rr r d r  

* Separation into modes is possible because of the assumed axial 
symmetry of the static solution, 



The corresponding non-dimensional stress can be defined as 

and as a consequence the relationship among these two stresses is 

- D Nm - - T  
R2 xx 

Similarly the various dimensional stresses arnd strains m e  as listed 

below with their relationship to the dimensionless quantities. 

Consequently the stress strain relationships among the dimensionless 

quantities are: 

F = EXe - - 0  XQ 
(2.14) 



since G = E/2( l+v) ,  

Further the relationships among the bending mments are: 

The appropriate boundary conditions fo r  a circular plate  must 

now be considered. It i s  convenient t o  consider the relevant conditions 

fo r  the s t a t i c  equations apart from those associated with the differen- 

t i a l  equations governing the vibration motion. L e t  the plate  be simply 

supported a t  i t s  circumference. 

supported" 

The usual interpretation of "simply 

i s  t o  consider t h a t  both the deflection a t  the support and 

the rad ia l  res is t ing moment offered by the support are  zero. However, 

a theory tha t  includes membrane e f fec ts  must i n  addition specify a 

res t r ic t ion,  a t  the boundaries, upon the membrane displacements or 
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stresses. 

support i s  specified. Alternately, the rad ia l  membrane s t ress  can 

be specified, which i s  indeed the  manner i n  which Friedrichs and 

Stoker (13) chose t o  s ta te  the i r  problem. 

gation i s  primarily concerned with the dynamic problem a displacement 

condition appears more appropriate. The effects  upon the s t a t i c  prob- 

l e m  depending upon the nature of the membrane boundary condition 

specification are  equivalent f o r  e i ther  of the above cases. Physically 

Thus f o r  the s ta t ic  problem a rad ia l  displacement a t  the 

However, since t h i s  investi- 

the most realizable si tuation i s  t o  specify a zero rad ia l  displacement 

of the plate  a t  the edge and then consider the effect  of uniform 

heating of the p la te  (the supporting structure being assumed r i g i d  

i n  the usual sense as  well as with respect t o  temperature changes). 

Thermal effects  would require an additional term i n  Equation (2.2) and 

make the boundary condition homogeneous, which again i s  mathematically 

equivalent t o  the s i tuat ion chosen here. 

Thus the boundary conditions governing the solGtion of the 

s t a t i c  problem are 

B1(W) 3 W(1) = 0 (2.16) 

V (W" - - W') x x=l 0 (2.17) 

(2.18) s and u (1) = - 1% 
- 

Here % i s  the magnitude of the radial  displacement which i s  required 

t o  cause the  plate  t o  buckle i n  the usual or l inear,  Euler, sense. The 

term A i s  a parameter determining the extent t o  which the post buckling 

domain i s  penetrated. This th i rd  condition i s  conveniently rephrased 

i n  terms of the s t ress  function @. Utilizing the relationship between 



2 and es for a symmetric configuration, one finds 
88 

S 
88 

;;S = x e  

Consequently, by Equation (2.14) 

B3(@) E x[x(+ @') '  + (l-V)(& = - 1% (2.19) 

where R -  
UE = 7% 

The boundary conditions for the dynamic equations require more 

careful consideration as a consequence of the permitted occurrence of non- 

symmetric modes. Again the notion of simple support implies that 

%(wn) = 0 (2.20) 

and = 0 (2.21) 

Consistent with Equation (2.9) the prescribed membrane displace- 

ments at the boundary take the form 

u(l,e> = 1 ph cos ne 

v(1,e) = 1 Bn sin ne + B*x 
(2.22) 

where the A ' s  and B ' s  are specified. 

It appears then that a specification of An and Bn provides the 

For the axially necessary number of conditions required of the problem. 

symmetric case, n = 0, v is identically zero (plus the possibility of 

rigid body motion) and just one condition needs to be imposed to specify 

the problem completely. Emever, a notable situation exists when n = 1. 

It can be shown- that in this case, also, just one additional condition 

is sufficient to specify the problem completely. 

This and other details for the case, n = 1, are carried out in detail * 
in Appendix A. 



The situation for n = 0 permits choosing the boundary condition 

which is similar with that for the static case, i.e. zero radial dis- 

placement, which in turn is synonymous with 

Eo (1) = 0 
88 (2 .23)  

Furthermore, this same condition is admissible and sufficient for n = 1. 

These are the only cases for'whichcmputations are carried out. Conse- 

quently the third boundary condition used for the dynamic case is 

2 
Bq($) E en 88 (1) = [PI' - v ( $  $' - 5 p)] x=l = 0 (2.24) 

with n = 0, 1. 



111. THE PERTURBATION SOL-LTTION 

In recall ing the different ia l  equations and boundary condi- 

t ions governing the problem, we consider f irst  the s t a t i c  case. 

required t o  solve the following d i f fe ren t ia l  equations 

It is 

4 1  v w - - ( lg* 'W' ) '  = 0 (2. Ila) 
X 

and the associated boundary conditions* 

B1(W) = 0 

B2(W) = 0 

B3(@*) = -1% 

(2 .  llb) 

(2.16) 

(2.17) 

(2.18) 

It i s  convenient here t o  par t i t ion  the stress function such that 

where the function Do sa t i s f ies  the d i f fe ren t ia l  eqQation 

no 4 = 0 

and the boundary condition 

( 3 . 2 )  

Consequently, the function 0 sa t i s f ies  the d i f fe ren t ia l  equation 

040 = - - 1 (W'Wl)' 
2x 

(3.4) 

and the boundary condition 

B3(@) = 0 (3* 5) 

It should be understood that the regularity requirements a t  the origin M 

a re  being considered implicitly. 



The first of these equations w i l l  be recognized as the usual 

problem of plane e l a s t i c i ty  whose well-known solution for  the solid 

disk is  

- Tk* Do - - -  
2 

(3.6) 

where T = %  
1-v 

and where % is  found i n  Equation (3.17). 

In order t o  proceed t o  the topic of this thesis,  it is  f i r s t  

necessary t o  reproduce the solution previously obtained by Friedrichs 

and Stoker. There are  two reasons that necessitate the repeti t ion of 

t h i s  work. F i r s t ,  although these writers have completely solved t h i s  

problem, the i r  resul ts  are  presented i n  such a form as  not t o  permit 

d i rec t  application t o  the present work. 

s i m p l i e  the problem by a substitution of variables f o r  W 

Secondly, they were able t o  

and fo r  

the s t ress  function thereby reducing the order of the d i f fe ren t ia l  

equations and making them directly integrable, a t  l e a s t  i n  part. 

is  not .possible here, since i n  the dynamic equations, due t o  the iner t ia  

This 

term, 

the substitution of variables appears t o  be possible. Consequently, it 

w will appear explicit ly and hence neither the integration nor 

i s  necessary t o  proceed with a solution in terms of W and @ following, 

however, the example s e t  for th  by Friedrichs and Stoker. 

Assume the functions W, a, and X t o  be expandable i n  perturba- 

t i on  series:* 

* It can be shown tha t  the other terms vanish. 
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, 

Here E is the perturbation parameter which w i l l  be chosen as 

a monotone increasing function whose direct significance will be fixed 

at a later point in the development. 

directly to the amouut of deflection in this problem. 

hand, it could represent the amount of radial displacement or, indeed, 

it could be any other monotone increasing function. 

It w i l l  eventually be related 

On the other 

Substitution of these perturbation expansions in the differen- 

tial equations and boundary condi%ions yields a sequence of differential 

equations, with associated boundary conditions, when coefficients of like 

parers of e are equated. Consider now the various differential equations. 

It w i l l  be recognized that associated with EO we obtain the equation whose 

solution is the function a0. 
1 For E the differential equation is 

or alternately by Equation ( 3 . 6 )  

L1(W1) A1 + hoT 1 X (xWi)' = 0 (3.9) 

and the boundary conditions are 

This is seen to be the linear eigenvalue problem for the buckling of the 
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plate subjected to compressive edge traction or displacement (X T 

represents the eigenvalue of the problem), 
0 

There exists an infini’y 

of eigenvalues and the solution to the problem may be represented 

a development in the form ofthe associated modes or eigenfunctions* as 
m rn 

L 
m=l 

This solution automatically satisfies the baundary condition By 

eigenf‘unctions must satisfy the associated characteristic equation 

The 

which is obtainable from the boundary condition B2, 

equation for the mth m o d e  is 

The characteristic 

where J (x) is the Bessel function* of the first kind and of order p 

and 
P 
is a root of the characteristic equation. There is an infinite 

number of such roots. 

However, is related to and T through the differential 
0 

equation by 

2 
0 m = a  (3.14) 

Consequently the chasacteristic equation determines Xf)T. Since the 

interest here centers armmd. the first buckling mode, i. e, the symmetric 

one, only the lawest eigenvalue and its associated eigenfunction is 

* Superscripts in pamatheses are intended to identify the variable ana 
not to act as an exponent. 
be omitted whenever there is no possible canfusion and w i l l  be included 
anly to avoid confusion in isolated cases. 
H 

the ref. (23) is used as a standard throughout this thesis to avoid 
possible conf?x?don. 

Wherever possible, however, parentheses will 

In view of the varying defintions for the various Bessel functions, 
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considered. Consequently 

and 

It is convenient to choose 

whereby 
2 
1 

T = a  

Furthermore, let 

This choice governs the selection of E. Having obtained T, the value 

of U is now determined, E 

(3.17) 
2 

= ( 1 - V ) T  = (1-v>al 

The above-mentioned eigenfunctions form a complete set of func- 

tions sa.tisfying the boundary conditions at x = 1 and the regularity 

conditions at the center of the plate and may be utilized in developing 

expressions for other functions by the familiar expansion property of 

eigenfunctions. This property will be utilized extensively in the sub- 

sequent paragraphs. * 
2 For E the differential equation for a2 is obtained, 

4 1 v a2 = - - (W'W')' 
2x 11 

(3.18) 

in which W1 represents the function just obtained. 

* For a detailed discussion of systems of eigenfunctions and their 
properties see ref. (24) or (25). 
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The associated bounday condition i s  

B(@) = 0 (3.191 3 2  

The equation i s  par t ia l ly  integrable and upon using the regularity con- 

dit ions a t  the origin the following expression i n  closed form i s  obtained 

through the use of f a m i l i a r  recursion relations, reference (23), 

2 
- (1 @;)' - - "1 [J;(alx) - Jo(alx) J2 (a,x)l (3.20) 

X 4x 

Further integration of this expression seems impossible except by sub- 

s t i t u t ion  of an inf in i te  series. When t h i s  i s  done and another integra- 

t i on  performed, the resu l t  i s  

Further integration i s  not necessary since the function (D2 w i l l  not be 

needed explicit ly.  The constant C can be determined from B 3' 
For e3 the different ia l  equation governing W3 i s  obtained 

where 

F3(x) = - 1 %(@AWW;)' + F*(x) 
X 3 

- 1  4e - - - X2T(xWi)' + F (x) 
X 3 

and where 

F3(x) * = ;; 1 (0;W;)' 

(3.23) 

(3.24) 
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The associated boundary conditions are 

Bl(W3) = 0 (3.25) 

32043) = 0 (3.26) 

The differential equation here is nonhomogeneous, but the 

associated homogeneous equation is identical with Equation (3.9). This 

homogeneous system has the nontrivial solution W1. 

geneous differential equation may have no solution or, if it has a solution, 

Hence the nonhomo- 

then this solution is not unique inasmuch as there can be added to it any 

arbitrary* multiple of W1. 

tion possess a solution, the right hand side must satisfy an orthogonality 

In order that the abave nonhomogeneous equa- 

condition which is, in this case, 

1 
n 

J '  F3(x) H1x dx = 0 (3.27) 
0 

This orthogonality condition serves to determine the coefficient +, 
1 

The particular solution can now be constructed and the procedure con- 

tinxed to determine further perturbation coefficients and functions. 

However, as will become apparent in the sequel, there is no need to 

pursue the solution of the equilibrium problem beyond this point. 

Turning now to the subject of this thesis, which is the vibra- 

tion of the plate in the presence of the static or initial configurations 

and the associated equilibrium system of stresses discussed in the pre- 

vious paragraphs, it will be noted that the method of solution in the 

While the choice is theoretically arbitrary, the specific value is * 
selected on the basis of convenience of computation. 
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dynamic case has much in  camon with that used above and hence only 

the essent ia l  points are presented. 

The equations governing the motion of the plate  are (2.12a), 

(2.l2b) and, as  a matter of convenience, they a re  presented again. 

By substitution of ( 3 . 6 ) ,  Equation (2. =a) i s  further simplified t o  

2 

2 
2 2 1 n - - (Q'w")' + - Q" Wn 

X (3 - %)'." X + LOT($ - %)# X X 

n n  2 - - 1 ($'W')' + % p w '  = p w 
X X 

(3.29) 

( 2 . m )  

A s  pointed out i n  Chapter 11, the boundary conditions a re  

i f  attention i s  res t r ic ted t o  the cases 

n = O  

and n = 1 .  

(2.21) 

(2.22) 

(2.24) 

In general, the functions w, $ and p, are expanded in  pertur- 

bation ser ies  u t i l i z ing  the same parameter E as i n  the s'tatic case. 

Upon substitution of these perturbation expansions* i n  the d i f fe ren t ia l  

The f ac t  tha t  wn and pn are  even expansions i n  E and t h a t  is  an odd 
expansion may be easily verified upon substitution i n  the relevant equa- 
tions. 

* 

For the sake of brevity these steps are omitted here. 
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equations and associated boundary conditions, a new sequence of differ- 

ential equations is obtained whose solution will Y o l l o w  very similar 

methods to those presented for the static case. It will also become 

apparent that the partitioning of the stress function O* makes this 

future work similar to the previous paragraphs. 

For E' the 

L2(*) = (-3 - 

differential equation is 

n n  

X X 

and the associated boundary conditions are 

The solution of this equation is 
m 

~n = 1 a. (d wo 
0 

m=O 

where 

(3.32) 

(3.33 1 

(3.34) 

(3.35 

which immediately satisfies B1 and where In is the modified Bessel 

function. 

equations obtained in the usual fashion from the boundary conditions, B2. 

This eigenvalue problem is governed by the characteristic 

nm nm where p1 and p2 are related to hoT (i. e., al) and prim by 
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(3.37) 

The functions wm obey t h e  usual orthogonality conditions which, i n  th i s  

case, are  

nm rs w w  x d x = o  
J 
0 

( 3 . 3 8 )  

It should be noted that, f o r  a specific value of n, represent- 

ing the  number of nodal diameters, there ex is t s  an inf in i ty  of roots of 

the above system which are  designated by the index m. The index m repre- 

sents the number of nodal c i rc les  appearing in  the vibration pat tern of 

the plate.  

solved by Federhofer i n  1935. 

A similar system f o r  the case of a clamped edge p la te  was 

(8) 

n For c1 a different ia l  equation governing the function g1 is  

obtained which i s  

where 
2 gl(x) = - 1 ( W i % l ) '  - n W ' l P  

X ,2 1 0 

and the associated boundary conditions a re  

(3.42) 
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"his i s  a problem of integration; however, the form of the function 

gl(x) is  such that a numerical integration i s  e-Jident except f o r  n = 0. 

For E 2 a d i f fe ren t ia l  equation governing the deflection function wy 
is  obtained which i s  

where 

and where 

and where associated boundary conditions a re  

(3.46) 

(3.47) 

By the now familiar process, f2(x) must sa t i s fy  an orthogonality condi- 

t ion  i n  order t o  obtain a solution f o r  w2 and aut of this  re la t ion 

emerges p nm 
2 1, I f2(x)w7 xdx 

J W F W F  xdx 

- 0  nm - -  
2 1 P 

0 

(3.48) 

For the  special case, n = 0, numerical results are readily 

obtained. In  par t icular  the value of the rate of change of frequency 

with respect t o  the load parameter i s  desired i n  the neighborhood of 

the condition of l inear  buckling which i s  

where p2 and + are defined by Equation (3.30). 
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In pursuing the analytical  steps outlined previously for  
0 

the synrmetric mode of vibration it becomes apparent that 

a multiple of Q2 and hence from Equation (3.48) and by the use of 

Equation (3.21) 

becomes 

$ d 3 p p  

1 cL2 = 2 y  * 0 5 % L k  

(3.50) 

which i s  readily evaluated. Thus f ina l ly  

49.29 (3- 51) 

In closing, then, it i s  evident t h a t  when the c r i t i c a l  or 

l inear  buckling condition is reached the frequency of vibration is  

zero and as  the plate  proceeds in to  the post buckled condition the 

square of the frequency increases i n i t i a l l y  i n  a l inear  fashion with 

the buckling parameter. 

Further calculations with the perturbation method become 

exceedingly cumbersome and are abandoned i n  favor of the power ser ies  

m e t h o d  of the next chapter. However, the present resu l t  i s  exact a s  

E 

dition. 

approaches zero since higher order expansions vanish f o r  t h i s  con- 



IV. THE POWER SERES METFIOD 

Another possible means of solving the system of d i f fe ren t ia l  

equations presented here is  to develop the solution i n  terms of a 

power series. Again we borrow the resul ts  of Friedrichs and Stoker 

fo r  the solution of the s ta t ic  problem. The phrasing i s  s l igh t ly  differ-  

ent and some of the numerical computations used are  only minor variations 

of theirs.  

The system of different ia l  equations fo r  the s t a t i c  case i s  

(2. I l a )  4 1  v w  - - (@.'W.')' = 0 
X 

+@ = - - 1 (WSW')' 
2x 

and the boundary conditions associated with them are 

(2 .  llb) 

(2.16) 

(2.17) 

(2.19) 

Le t  the functions W and @ be expressed in  power ser ies  of 

the coordinate x. These series are  even functions i n  x. 
m 

w = 1 amx 2m 

m=O 

@ = 1 bmx 2m 

m=O 

( 4 . 0  

(4.2) 

It i s  easy t o  show by substitution i n  Equation \ L . l l a )  and (2 . l lb )  that 

the coefficients ao, al, bo, and bl are, a t  t h i s  point, arbi t rary and 

-28- 



t h a t  a l l  of the other coefficients of the two ser ies  w i l l  be given 

by the following recwsion relationships. 

1 - bm - -  
4iI12(IU-1) 

In  terms of the coeffic 

stated boundary condit.ions become 

i ( m - i )  a . a  1 m - i  (4.4) 
U 

i=l 

ents i n  the power series, the previously 

a = O  m 

- 5  
2 

m ( 2 m  - 1 - v )  bm - - 
1 

It i s  evident that Eqxation (4.5)  serves only t o  determine 

the coefficient a 

t ions (4.6) and (h. 7 )  must be solved simultaneously f o r  the values of 

after the athers have been computed. The two equa- 0 

(4.5) 

(4.6) 

(4.7) 

a1 and bl. 

is  as might be expected since the stress function r 3  can in  general be 

varied with respeet t o  as much as an arbi t rary l inear  function of the 

Cartesian coordinates without affecting the stresses. 

The value of the coefficient bo remains arbi t rary and t h i s  

Hence, i n  principle, once the value of A i s  specified, it i s  

possible t o  obtain a l l  of the  necessary coefficients i n  order t o  be 

able t o  describe the complete solution f o r  the s t a t i c  case, 



are 

For the dynmic case the different ia l  equations t o  be solved 

The associated boundary conditions'* are  

B,(wn) = 0 

B*($) = 0 

B&(Pn)  = 0 

(2 .20 )  

(2.21) 

(2.24) 

The solution of the above d i f fe ren t ia l  equations may be ex- 

pressed as power ser ies  i n  x. Upon calculating w i t h  the power series 

by the usual methods, it beccnies clear tha t  the sol-dcions which are not 

singular a t  the origin are 

and 

(4,8) 

(4.9) 

The recllrsion relationships f o r  a l lval-des  of 

system are, a f t e r  dxopping the superseyipts fo r  c and d, 

n t h a t  evolve from t h i s  

* For n > 2 the number of boundary conditions increases t o  four. - 
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1 
c =  
m 16m(m-1) (mn) (mn-1) 

- 1 dm - - 
16m(m-i) (m+n)(mn-l) 

{p(n)c m-2 

m 

m > 2  - 
(4. lo )  

(4.11) 

w h i l e  the coefficients CO, c1, CIO, and d l  remain, a t  this point, undeter- 

mined. 

In terms of these power series, the boundary conditions f o r  

the dynamic problem assume the following form: 
W 

c L % = o  
m=O 

(4.12) 

It is  readily verified by examination of the recursion rela-  

t ion  i n  the cases when n = 0 and n = 1 that 

problem and this  is  again plausible in view of the remark made in con- 

w i l l  not appear i n  the 

nection with bo. 
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The boundary conditions thus present a system of homogeneous 

l inear  algebraic equations i n  the three unknown ~ x f f i c i e n t s  coy c 

dl, 

i s t i c  determinental equation associated with t h i s  system is, by vir tue 

of the form of the boundary conditions and the recursion relations, 

probably unattainable. In any case, no particular benefit would be 

derived from it since a numerical solution w i l l  have t o  be attempted 

and the appropriate algorithm can be stated in  terms of these equations. 

and 

The expl ic i t  form of tkie character- 

1’ 
as  well as  of the eigenvalue p. 

The solution of th i s  system of equations i s  t o  be performed 

on a d ig i t a l  computer i n  the following manner. An arbitrary value, 

such a s  unity fo r  example, i s  assigned t o  the coefficients c cl and 0, 

dl. 

determined by the recursion relationship. A generic term in the 

ser ies  depends upon co, cI and dl and polynomials i n  terms of p. 

Briefly then, each coefficient i n  the power aeries is  the sum of 

three polynomials i n  p, the coefficients of these polynomials being 

c1 and d respectively. The various coefficients 1 the constants co, 

can be generated and their  polynomial representation 

into the boundary equations (4. U ) ,  (4.13 j and (4.14). 

a t  least ,  each equation is composed of in f in i te  ser ies  aij  i n  p having 

a s  the i r  coefficients co, c1 and dl. 

A9 = 0 

The remaining coefficients i n  the power ser ies  expansion are  

i s  substituted 

Theoretically 

In matrix notation 

where A = (aij) i , j  = 172,3 

and 
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This system of eqxations w i l l  adnit a nontnivial soliltion when the 

determimint of the coefficient matrix A i s  zerc,. This det.erminant 

i s  equivalent t o  a power series i n  li whose roots represent +he 

required eigenvalues. 

Clearly the procedixe here m u s t  be modified t o  truncate 

this process. The coefficients of the power series of w and $ are  

computed u n t i l  a particular term becomes less  than a designated 

value. However, conirergence a t  th i s  point alone i s  not necessarily 

the f i n a l  t es t .  Satisfying the boundary conditions yields a z ~  approx- 

imation t o  the aij i n  that they are  now polynomials, 

noted tha t  the first neglected te,m, for  instance, provides, in general, 

It should be 

a contribution t o  a l l  the previously computed coefficients i n  aij. 

However, the system was sufficiently convergent t o  insure convergence 

i n  t h i s  sense. 

nearest integer when m terms are  t.aken i n  the power series.  It 

The aij a re  polynomials in 9 of order m/2 t o  the 

i s  quite clear then that the  deteminaEt wher; expanded i s  capable 

of yielding a polynomial whose order i s  three times tha t  of the 

order of the aij  . 
by the computer, producing a polynomial characterist ic equation which 

must be solved fo r  the roots, by standard methods. 

This determinant may be expanded algebrzically, 

Generally, about sixteen terms i n  the power ser ies  produced 

sufficiently cowergent terns i n  the aij and it sufficed t o  take f ive  

or six terns i n  the characterist ic equation to obtain t,he roots. For 

very large penetration of t h e  post buckling domain the size of the 

numbers involved and the number of terns required f o r  the necessary 
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The aij were evaluat.ed ming  
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The penetration of the post buckling domain is measured by 

A, a r a t i o  of the edge displacement t o  that required f o r  the i n i t i a l  

instabi l i ty .  Friedpichs and S t ~ k e r ( ~ j ’ ~  1 use a parameter $ based 

upon a s t ress  ra t io .  

i n  terms of X; Figures 4 and 5 show the relat ion between the two param- 

eters.  

squared frequency parameter) and A. 

symmetric mode ( n  = 0)  and the f i rs t  mode having a nodal diameter (n = 1). 

The de ta i l s  of t h i s  re la t ion i n  the vicini ty  of A = 1, the early stages 

of penetration of the post buckling domain, a re  shown i n  Figure 2. 

Figure 3 the shapes of the modes  of vibration m e  depicted. The data 

used in plott ing Figures 1, 2 and 3 and f m h e r  information m e  given 

i n  Table I. 

For convenience the resu l t s  here are expressed 

The main r e su l t  offered here i s  the relat ion between (the 

Figure 1 shows the relat ion fo r  a 

In 

* 

The fac t  tha t  IJ- increases l inear ly  with X i n  the vicini ty  

of i n i t i a l  ins tab i l i ty  for the symmetric mod? as shown by the power 

ser ies  analysis i s  borne out by the per txbat ion analysis. 

2 the numeric value of the slope i s  f i f t y  which compares rather w e l l  

with the resu l t s  of Equation (3.491, i . e .  49.29. 

observe that a f t e r  some increase i n  

mode i s  lower than that of t.he symmetric mode. 

fo r  the symmetric case shows that a t  a value of 

nodal c i rc le  appears for  the lowest frequency. 

* All calculations are  based upon the value of Poisson’s r a t i o  v = .318. 

From Figure 

It i s  interesting t o  

X the frequency of the nonsymmetric 

Examination of the modes 

h between 13 and 19 a 

Near t h i s  value of X 

-35- 
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the frequency of the axially symnetric mode Lncl:?ases less rapidly and 

eventually becomes again less than that for n = 1. 3,is behavior of 

the frequencies is reasonable lnasmch as the nonsymmetric moss is 

essentially inextensional while the symmetric mode is essentially 

extensional and consequently the frequencies of the symmetric mode can 

become greater than those for n = 1. Upon the appearance of the nodal 

circle in the n = 0 mode, this mode also becomes essentially inextensional 

and the frequeycy increases at a lesser rate while X is increased. 

Under these circumstances the freqzency can, and does, become less than 

that for n = 1. Apparently the frequency reaches an asymptotic value as 

X is increased. It should be noted, howe-rer, that as X becomes large 

the accuracy* of the results becomes less certain but in any case they 

also become less meaningful because by the time X reaches values 

approaching m the equilibrium configuration is in, what Friedrichs 

and Stoker call, the asymptotic range. 

been stretched as a membrane except for a narrow boundary layer at the 

In this range the plate has 

edge where large bending stresses occur. That a plate could reach such 

a state is subject to question on practical grounds, in particular, if 

one considers the effect of imperfections upon the behavior of the ideal 

plate considered here. A l s o  the onset of plastic yielding or secondary 

bucklhg is likely to invalidate these somewhat academic results. 

A very significant result is that, in the range of computations, 

the frequency of vibration does not return to zero for X > 1. This implies 

-x- Accuracy was determined by the amount the deflection at the edge differed 
from zero with respect to the magnitude of the largest deflection. 
good 

FOP 
esults this amounted to one part in lo8 while for poor results one p a r t  

in 10 E . 
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that, zt least within the limitations inposed here on the nature of 

the assumed vibration modes (i. e. small amplitude <?ration), the 

positive definiteness of the potential energy and hence the sta5ility 

of the buckled configwatton is unchanged if only expansions up to 

the second power in the terms representing the additional neighboring 

deflections are included. 

in relation to higher modes. 

phenomenon of secondary buckling 

simple branch point. Research delving into this matter is continxing 

and attention is directed at the possibility of a discontinuous snap- 

through to a position of lower potential energy. This becomes possible 

when the quadratic form introduced in reference (19) loses its PO- dtive 

definite character. 

paper, reference (19). 

shows great similarity with that of buckling of certain types of shells.  

It appears likely that this is true also 

Consequently the experimentally observed 

cannot be explained in terms of a 

This is indeed the case as pointed out in the 

The problem of secondary buckling therefore 
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APPE;NDIX A 

TEE DYNAMIC BOUNDARY CONDITIONS FOR THE CASE n = 1 

The boundary conditions f o r  the case n = 1 require some 

special  consideration. The condition of "simple" support requires 

that the lateral deflection as w e l l  as the radial bending moment at  

the  outside edge be zero. 

requirements m u s t  be imposed on the membrane displacements or  the 

menibrase s t resses  (indirectly, through the stress function) or a combi- 

nation of both. In general, two more boundary conditions are required, 

but due t o  the obvious symmetry in the case n = 0, only one is  required 

beyond the  implications of symmetry. 

To complete the boundary conditions, some 

Consider now the  de ta i l s  o f t h e  case n = 1. For simplicity, 

the superscripts are canitted inasmuch as this  discussion i s  for  a 

specific case. 

The s t ress  function for  n = 1 is of the form 

$4 = $(XI cos 8 

while the l a t e r a l  displacement is 
- 
w = W(X) cos 8 

Frm the strain displacement equation it follows that 

. 

ana 
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The stress strain equations, u t i l i z i n g  the expression of the stresses 

in terms of the stress function imply that 

= 1 *' - 7 1 * - Y * l ' ]  cos 8 

and 
1 

* I  

= [*" - v ( ,  - 5 q ]  cos 8 88 e 

= 
[*'I - v( , )  1 cos 8 

where primes mean differentiation with respect to x. 

Hence 

- = [(A 9)' - V*I' - W'W'] cos 8 
ax X 

and upon integration 

u = [ y  1 Jr - v$' - W'w'dx] COS 8 + F1(Q) ( A . 2 )  

Further 

(A. 3 )  - J W'w'dx] COS Q - F1(B) 
and thus 

v = X[Jr1 '  - v ( y ]  sin 8 - [z 1 * - v* 

(A. 4) - 1 WywfaX] sin 8 - F2(B) + G ( x )  

where 



. 
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However, 

Upon substitution of the appropriate quantities i n  the above expression 

and simplifying the following is  obtained: 

+ - 1 d F  (3 + F2) + x(g)' = 0 
x dQ 

Equation ( k . 6 )  must hold for a l l  x and Q and it can be shown tha t  the 

required necessary and sufficient conditiolzs are 

x(2g + qf" - - 3* + W ' W '  - - 1 W ' W )  = -2c (A. 7 )  
X X X 

+ F2 = 3D, + 2 C  s i n  Q dF1 - 
a@ 

Equation (A71 i s  sat isf ied i f  I) satisfies t,he compatibility equztion 

associated w i t h  the von K&dn system of equations. 

be sat isf ied i f  F2 sa t i s f i e s  

Equation (A.8) w i l l  

d2F2 

dQ2 

+ F2 = 3D1 + 2C sin Q 

The solution of Equation ( A . l O )  'is 

F~ = - % cos Q + C2 s in  Q + 3D1 - 08 cos Q 

(A. 10) 

(A. 11) 
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frm which it follows, by Equation (A. 5), that 

F1 = C1 S h  8 + c2 cos 8 + C ( 8  S F n  8 - COS 8) (A. 12) 

The solution of Equation (A.9)  is  

G = 3 + D x  
2 X 

Consequently the displacement components become 

~(1) = (f - J W ' W V X  + c2) COS e - c1 sin Q + c(e  sin 8 - COS e) 

(A. 14) 

v(1) = (g + W'w'dx - C 2 )  sin 8 - C1 cos 8 - 3, + C8 cos 8 

D1 + -  + DX 2 X 
where 

and 

1 
f = (x JI - vdr')x=l = 4 0 )  - W ( l )  

If = Jr"(1) - ( l - v ) + ( l )  Q = [XV - (1 -v )  ; Ixzl 

f + g = - 1 [$I1 - V ( l ) ' ]  

- 

X x x=l 

Consistent with Equation (2.19) (and hence without any s igni f i -  

cant loss of generality) l e t  

c1 = 0 

Single valued displacements and regularity conditions a t  the origin, re- 

quire that C = O  and D1 = 0 

For n = 1, from Equation (2.22) 

u(1) = cos 8 

v(1) = BL s l n  8 + B* 
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Consequently 

and 

D = B* 

(A. 16) 

(A. 17 

In addition t o  the conditions imposed by the simple support a t  the edge 

it i s  sufficient t o  require that  

f + g = O  (A. 18) 

which by the use of ( A . 1 6 )  and (A.17) implies t ha t  

A1 = -B2 

and it m u s t  a lso be noted that 

and hence Equation (A.18)  implies 

ew(l)  = o (A. 20) 

which is the boundary condition used i n  the main text. 

For the power ser ies  approach 

a, 

* = f i ( l )  = alx + a* J- d,x*3 (A. 21) 
L 

m = l  

where, f o r  convenience of t h i s  discussion, al and a2 are  the arbi t rary 

constants and do i s  chosen as unity. It i s  easi ly  shown that (f + g )  

does not depend upon q. 

Meed, none of the stresses depend upon al, and fur ther  it can be 

shown that a1 and C 2  can be combined as a single constant C;. 

demonstrate this, substi tute the expression for  $ in to  f and g and 

Further, none of the s t resses  depend upon  CY^. 

To 

the  associated equations. Thus from Equation (A. 16) 

C2 + (1 -V)a2  + CY.2 ) [l - v(2m+3)]  - I W'w'dx = A1 ( A . 2 2 )  
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is obtained and by the use of Equation (A.17) and 

- c2 - (l-v)al + a2 1 [(21~+3)(*2) - (1-v)] dm + I W'w'dx = B1 (A.23) 

Let 
* c2 = c2 + (l-v)al 

In terms of the power series solution 

Consequently (f + g )  is independent of al. 

Equation (A.23) then serves to determine C2. 

Further, it can be seen that 
* 



APPENDIX B 

THE VIBRATIONS OF THE SIMF'LY SUPPORTED C l R n r W i  
PLATE W I T H  EDGE COMPRESSION 

(Linear Theory) 

D u r i n g  the course of the  present investigation, the  l inear  

problem of plate  vibration in the presence of radial edge campression 

was solved. The same problem for a clamped edge plate  was treated by 

Federhof er. ( 8 )  The boundary condition here i s  t h a t  of simpie support. 

The relevant equations mose  in connection with the perturbation solu- 

t i on  and are  repeated here for  convenience. 

The d i f fe ren t ia l  equation, a f t e r  separation of variables, 

i s  similar t o  Equation ( 3 .  31), 

and the associated boundary conditions are  

The solution t o  t h i s  equation i s  

where 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

which immediately sa t i s f i e s  BL. 

the characterist ic equations obtained i n  the usual fashion f r o m  the 

This eigenvalue problem i s  governed by 
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boundary conditions, 

nm where f.3, md f3F are related t o  X T( i. e., a) and pm by 

(B. 2) 

Since only the linear problem is considered here subscripts on h and a 

are omitted (which i n  Chapter I11 had meaning in connection with the 

perturbation solution). For the linear buckling problem 

nm 
p = o  (B. 3 )  

and it may be shown th is  i s  equivalent t o  

BF = 0 

By = (2 

and Equation (3 .36  1 becomes 

(B* 4) 

(B. 5 i 

where n designates the number of nodal diameters and m the number 

of nodal circles. 

The roots of the characteristic equations were obtained for 

several values of n and m by a high speed d ig i ta l  computer using 

a step-by-step searching method followed by an interval halving method 

until the roots were reproduced within specified limits In Tabie 1- 



and 111 roots of Equation ( 3 . 3 6 )  are tab-alated f o r  several values of 

n, m and a. 

and of buckling was solved for a numbez of ~ o o t s .  

presented in Table N. 

For the axially symmetric mode the c%=c of free vibration 

.These res-Z+s m e  
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x 
1. ooou 1 
1000009 
1.00017 
1.00034 
1.00067 
;.00101 
1.00402 
1.00887 
1.01574 
1 02462 
1.33552 
1 04846 
1.06343 
1.08029 
1.09886 
1.41138 
1.98215 
2.91311 
4. 15096 
4.42706 
6031125 
7.11236 
9 57456 

11,25514 
1 3  86542 
19,60922 
290  17450 
33.88582 
42.29802 
50.15607 
61.01744 
70.96683 

TABU I 

FREQUENCY P m  p FOR n = 0, n = 1 FOR 
VARIOUS VALUES (23' X, 

x S 

1 . U U C ) U U  
1 . U U c l U l  
1 .U0~03 
loCrO005 
1.bW10 
10006 15  
loCrUir59 
l.Cr0125 
1 WO229 
1.0U359 
1.U0517 
1ocl07d5 
lob0923 
1.01168 
lo i i l437  
1.05927 
1013931 
1.26498 
1.42499 
1.45835 
1.68353 
1.77494 
2.04258 
2.21547 
2.47114 
2.99070 
3.76396 
4.11459 
4.70397 
5022U66 
5.89279 
6.47418 

n=O n = I  

c1.000 
0.CIC14 
6oU09 
0.017 
uoU33 
0.050 
0.1Y8 
0.437 
0.775 
1.213 
1.750 
2.367 
3.124 
3 . 954 
4.869 

20.258 
48.371 
94.298 

155.952 
169 243 
262.640 
302.177 
421.501 
499.3 17 
610.406 
794.910 
9*8.097 
980.571 

1035.067 
1061.999 
1091.762 
1122.798 

131.410 
1310412 
131.414 
131.419 
131.427 
131.435 
131.511 
131,632 
1310804 
132.GL6 
1320299 
132.623 
132.998 
133.420 
13 3. 8 d 6  
141.735 
156.161 
179.920 
212.109 
219.068 
268.598 
289.862 
355.833 
401.278 
472.235 
629.174 
066.156 

1008.043 
12  13.347 
1388.049 
1603.025 
17 74.656 



-53- 

ROOTS OF THE CHARACTEXISTIC EQUATION FOR 
VIEBATION OF THE CIRCULAR PLATE WITH EDGE 

CCBPRESSIOIT-LINEAR PROBLEM, n = 0. 

0.0 
0.5 
1.0 
1.3 
1.5 
1.6 
1.8 
2.0 
2 0 0 6 0 0 0 1 7  

m = O  

I 
2.2274580 
2.1656121 
1 966381U 
1.7594769 
1.5675703 
1.4482550 
1. 1342579 
0.5716016 
0.0 

2 2 2  7 4 5 8 0  
2 0 2 2 2 5 8 3  
2 2 0 6 0 4 9 5  
2. 1 8 7 6 3 7 8  
2. 11596259 
2.1581109 
2. 1 2 7 5 6 6 9  
2.0800789 
2. O6OOO 1 7  

I 

m = l  

! 
0.0 
0.5 
1.0 
1.3 
1.5 
1.6 
1.8 
2.0 
3.0 
4. 0 
5.0 
5.3928115 

5.4535042 
5.4302508 
5.3598667 
5.2942696 
5.2404103 
5021U3511 
5. 1437857 
5.0683233 
4.5398584 
3.6705019 
2 0548660 
0.0 

5.4535042 
5. 4 5 3 2 2  1 5  
5.4523547 
5.4515402 
5 0 4 5 0 8 6 2 4  
5 45  048 2 4  
5 4 4 9 6 3  5 9  
5 44 866 05  
5 044 1 5 3 6 1  
5 4 2 8 8 6 5 8  
5.40578 1 6  
5. 3 9 2 8 1  1 5  

I I 

m = 2  

0.0 
0.5 
1.0 
1.3 
1.5 
1.6 
1.8 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
8.5739849 

8 06125308 
8.5979338 
8.5539953 
8 5 13369 1 
8.4802543 
8 04618651 
8 0 4 2  13943 
8.3759155 
8 .  0702978 
7.6216586 
7.002271 7 
6. 1602463 
4.9827378 
3.1059983 
0.0 

8.6125308 
8.6 1 2 4 5 9 9  
8 .  6 1 2 2 4 9 3  
8.6 1 2 0 5 2 8  
8.61 1 8 9 3 8  
8 6 1 1 8 0 3 7  
8.6116133 
8.6 1 1 3 8 5 6  
8.609861 1 
8.6075363 
8 6 d 4 1 7 4 0  
8.5993392 
8 .  5 9 2 3 0 3 4  
8 .  5 8  1 7 9 6 2  
8.5739849 

4. 9 6 1 5 6 9  
4 8 1325 3 
4.337934 
3.849038 
3.401041 
3. 1 2 5 4 9 5  
2 0413210 
1.188976 
0.0 

29.740708 
29.612360 
29.223895 
28.861924 
28  0564755 
28.398927 
28.031759 
2 7 0 6 1 5 5 7 2  
24.703803 
19.926662 
1 1  10815 7 
0.0 

74.1 7 5 6 8 7  
74.049359 
7 3 0 6 6 9 1 3 9  
73.317583 
1 3  0 0 3 1 0 4 9  
72.871920 
72.521791 
72.128238 
6 9  4 8 4 1  4 3 
6 5 0 6 0 3 7 0 3  
6 0  2 4 8 7 6 4  
52.974048 
4 2  8 1 3 1  9 5  
26.655044 
0.0 
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ROOTS OF THE CHARACTERISTIC EQU4TIZX FOR 

VIBRATION OF THE CIRCULAR PLATE WITH bTGE 
CCMPKESSICR-LINEAR PROBLEM, n = 1 

I I I 

m = O  

0.0 
0.5 
1.u 
1.3 
1.5 
1.6 
1.8 
2.0 
3.0 
3 63065 5 1 

0.0 
0.5 
1.0 
1.3 
1.5 
1.6 
1.8 
2.0 
3.0 
4.0 
5.0 
6.0 
6. 9 151434 

I-- 

3 . 73 10427 
3.6964372 
3 . 59L14497 
3.4900374 
3 406 192 5 
3 3588249 
3.2523577 
3. 1288098 
2 1309236 
0.0 

3. 73 1042 7 
3.7301003 
3.7271555 
3.7242934 
3 72 184 74 
3 720444 1 
3 .  7172343 
3.7134150 
3.6797875 
3 63065 5 1 

13.9206793 
13.788082 
13.382351 
12.997923 
12.677329 
12 -496320 
12 e089775 
11.618569 
7. 84 1346 
0.0 

6 9641241 
6.9460158 
6.8914081 
6.8407772 
6.7994036 
6 7763914 
6. 7256276 
6 668431 0 
6. 2789499 
5 6882904 
4. 82 17636 
3 4752368 
0.0 

6. 9641241 
6.9639885 
6.9635843 
6.9632056 
6.9626938 
6. 9627209 
6.9623320 
6.96 18944 
6.9588226 
6.9538944 
6. 946 1792 
6. 9337776 
3. 6306551 

480499024 
48.371974 
47.98890 1 
47.633738 
47.343525 
47 l8Zl2L 
46.826052 
46 e42491 L 
43 e694098 
39.555770 
33.492834 
24.09651 9 
0.0 

~~ 

m = 2  , 
0.0 
0.5 
1.0 
1.3 
1.5 
1.6 
1.8 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
a . 11 
10.1054O66 

10 138746 
10.1262940 
10.0890692 
10.0546935 
10 002671 17 
10.0111877 
9 . 37713459 
9.9387485 
9 6829959 
9.3130618 
8 08144723 
8 .  163'5122 
7 .  3193063 
6.2028258 
0.0 

10.138746 
10.1386306 
10.1385068 
10.1383855 
10.1382912 
10.1382384 
10.1383185 
10.1379842 
10.1370810 
10.1357349 
10.1338593 
10.1312850 
10.1277957 
10.1229961 
10.2054066 

102.794170 
102 0666754 
1020288096 
101.938358 
101.653723 
101.495807 
101.148473 
100.758874 
98.157313 
94 39472 6 
89.324523 
82 0706868 
74.128439 
67.79 1182 
0.0 
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- 
m 
- 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
1 1  
12 
13 
14 - 

TABU N 

VALUES OF BUCKLING AND FRIQUENCY ASSOCIATED 
? A F # " E B S  FOR n = 0 

CY 
2.0600017 
5. 3928115 
8.5739849 

11.733336 
14.885062 
18.033223 
21.179422 
24.324426 
2 7 468644 
30 612324 
33.755613 
36.898613 
40 o04139Ci 
43.183997 
46 326466 

P, = p2 
2.2274580 
5.4535041 
8.6125307 

1 1  76 1687 
14.907513 
18.05 1816 
21.195296 
24.338273 
27.480928 
30.623355 
33.765622 
360907774 
40.049857 
43.191848 
46.333817 

40961569C 
29.740707 
74. 175685 
138.33727 
222 23394 
325. 86805 
449 e 24056 
592.35151 
755.20139 
937.78984 

1140. 1172 
1364.1837 
1603.9910 
1865.5357 
2 146. 8225 
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